Monthly Archives: January 2013

Discussion with Dr. Julia Baum: Insight into Pursuing a Career in Academia

As part of the Inspire Ocean Discussion Series, Dr. Julia Baum kindly gave a presentation on her career path in academia. She received her B.Sc. at the University of Guelph and a M.Sc. and Ph.D. from Dalhousie University. Today, she is an Assistant Professor at UVic with her time divided into 40% research, 40% teaching, and 20% service (which includes public outreach). Her research focuses on marine conservation and includes how anthropogenic disturbances are affecting marine communities, diversity and ecosystem function. Her work has led her to the Christmas Islands to conduct field research. During the discussion, Julia gave advice and wise words to those planning to pursue a career in academia.

julia and kara She told us about the hard realities of an academic career in the marine sciences – it is a lot of work, but if you really love it then you should go for it. Being a marine biologist isn’t about hugging dolphins. Your drive should come from a curiosity for science as an exercise in problem solving. In other words, you should have a genuine interest in the process of scientific discovery, rather than a romanticized idea of marine science. Julia talked about how much of her time was spent working hard at a computer and in the lab and only a fraction in the field. However, it was her love for the scientific process that kept her motivated.

When pursuing a career in the marine sciences, be creative and keep an open mind about the different career opportunities available. Remember that a large diversity of careers apart from research can have a connection to the ocean – whether it is a journalist, filmmaker or an educator. Julia emphasized that a career path in academia does not have to be a straight trajectory. Don’t be discouraged if you miss an opportunity or if you find yourself in a position that is unrelated to your targeted career destination. When Julia started her academic career she was interested in terrestrial ecosystems. It wasn’t until later that she found an interest and career in the marine sciences.

Research experience outside the classroom is always beneficial, regardless of your academic career path. In particular, lab experience is extremely advantageous and can help you learn how real science is done. Julia advised that when applying for a lab position it is imperative that you write a letter of inquiry as well as provide a CV and transcript. Make your letter stand out and try to refrain from only talking about your personal connection to the ocean – you can include this but go deeper. Tailor your letter to the research interests of the professor in charge of the lab and indicate how they relate to your interests and skill set.

And above all, it is important to remember that it will be your passion and scientific curiosities that will push you through the long nights and dark days of never-ending data analysis and pure hard work.  But the end result will surely be worth it!

-Kara Aschenbrenner, OSS Member

The next discussion will be held February 15th from 3:00-4:00pm at the UVic Grad House. There will be two guest speakers presenting: David Fissel, a research oceanographer and Glenda Watt, from ASL Environment Sciences

For more information about the Inspire Ocean Discussion Series contact Ellyn Davidson: ellynd@ or visit the Ocean Students Society website: .


Glass Sponges Basking in Fast Flows

Glass sponge reefs form an alien world that is right at our doorstep and unique to the BC coast. During my masters research (I’ve since moved on to a PhD project) I had the opportunity to look at how tidal waters flow over the sponges.


One of these sponge reefs has made Fraser Ridge its home. In the shadow of the Vancouver International Airport, Fraser Ridge sits in about 200 m of water a few kilometres off shore. Scoured down to the rock by tides, the ridge is surrounded by muddy goo dropped by the Fraser River. If you have ever flown from Victoria to Vancouver, you’ve passed over Fraser Ridge.

I was lucky enough to watch in real time on an high-definition screen while ROPOS (a robotic submersible) explored the sponge reef at Fraser Ridge. A ‘snow storm’ of settling sediment obscured the view as ROPOS ‘flew’ towards the reef. As the reef finally became visible, my first thought was that I was watching a scene from a science fiction movie where a space ship is approaching a city on another planet.

Glass sponges form elaborate constructions of fiberglass. Touching them feels like pink insulation – smooth and prickly at the same time. Their colour palate is pale – I only saw yellow, peach and white sponges (other colours can be seen elsewhere). Some look like a crime scene for a mass mannequin massacre, hollow limbs sticking up at odd angles, while others look like a discombobulated jumble of bowling pins of different sizes. Nothing like them exist on land.

To form a reef, live sponges build on the scaffolding left by their ancestors. When sponges die, their structure remains which fills with sediment forming a solid base for new sponges to build on. At Fraser Ridge the reef reaches a height of about 14 m.

Glass sponge reefs are unique to BC, but that wasn’t always the case. When dinosaurs lumbered on land, glass sponge reefs grew over large swaths of the shallow oceans. Studying modern glass sponge reefs gives us a window into a past ecosystem. Today, these reefs host a diverse ecosystem by providing shelter and food. Juvenile fish spend their youth darting about spongy spines and crevices while shrimp use their delicate claws to clean alga off the sponges.

Since sponges have chosen to stay put and build, their food must come to them. They filter feed by pumping water through elaborated internal canals (there are some great videos of dye experiments that show this). A sponge’s sustenance comes by water currents and that’s where my work comes in as I’m interested in how water moves.

We used data from an ADCP (acoustic doppler current profiler) to look at the structure of the flow over the ridge. An ADCP works by sending out an acoustic pulse that reflects off the little particles found throughout the water column. The instrument then calculates the water’s velocity at different depths. For my project, this data was collected from a ship and from a mooring we put on the bottom next to the sponge reef.

Local topography, perhaps even augmented by the sponge reef’s own structures, can change how the tides flow – it turns out to be a balance between the water velocity and density. At Fraser Ridge, we found a pocket of intermittently faster flow lasting only a few hours in the region of the sponge reef. This period of high-speed flow flushed away the fine sediment from the river, preventing the sponges from being buried and brought in food. When the tides wane, a cloud of tasty delights is left for the sponges to filter through.

Jeannette Bedard, OSS Member

Photo credit: Sponge Reef on Fraser Ridge, VENUS, Ocean Networks Canada, University of Victoria